
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2009; 60:1011–1031
Published online 17 October 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1929

Linear Galerkin vs mixed finite element 2D flow fields

Mario Putti1 and Flavio Sartoretto2,∗,†

1Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Padova, Italy
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SUMMARY

Numerical velocity fields arising from the solution of diffusion equations by the finite element (FE) and
the mixed hybrid finite element (MHFE) schemes display different behaviors. In this paper we analyze the
characteristics of the two different velocity fields in terms of both accuracy and mass balance properties.
General theoretical findings are mostly concerned with the asymptotic behavior of the numerical schemes,
i.e. they look at properties as the mesh size tends to zero. For practical applications, it is necessary to
work with a fixed mesh of given size. Thus, we attempt to characterize the numerical flow field accuracy
by analyzing the resulting mass balance characteristics on a fixed mesh. The comparison is carried out
by using direct local mass balance evaluations and by calculating streamlines. We detail the important
differences, advantages, and disadvantages of the two approaches. In particular, we show that both FE
and MH are perfectly conservative (up to the residual of the linear system solution) if proper control
volumes are used. MH streamlines are admissible, i.e. numerical normal fluxes across cell interfaces are
continuous. Since continuity of the normal fluxes is not guaranteed by FE, the resulting streamlines are
less accurate. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the classical steady-state diffusion equation governing potential flow in two-
dimensional domains. This equation generally describes conservation of mass or energy fluxes,
and is often used to calculate velocity fields. When used to represent convective flux in a
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1012 M. PUTTI AND F. SARTORETTO

convection–diffusion equation, the velocity field v must be ‘conservative’ or ‘divergence free’, if
mass balance of the convected quantity needs to be conserved [1].

The problem of fulfilling the conservation properties of a numerical flow field has been addressed
in a number of works [2–5]. It is often reported that Galerkin finite element (FE) approaches
lead to inaccurate and non-conservative velocity fields [6–8]. In other words, though theory
guarantees optimal convergence, there are instances when local errors may be large not due to
lack of convergence, which may occur in highly anisotropic problems because of the mesh locking
phenomenon [9], but due to a large asymptotic error constant. This problem is often tackled by
post processing the numerical velocities [2]. For example, in [8], the author approximates the
velocity vector components by means of the same linear basis functions used in the discretization
of the conservation equation, and then imposes a weak form of the momentum equation (Darcy’s
law in this case). The resulting velocity fields are mass conservative, but suffer from severe loss of
accuracy when the diffusion coefficient K changes in space. For two-dimensional triangulations,
[3] enforce an irrotational field on local patches, so that a divergence-free velocity can be recovered,
but this technique is not extensible to three spatial dimensions. Being based on post processing of
the velocities, all these approaches are not completely satisfactory, in the sense that the resulting
field is changed by the post-processing method, and may not accurately resolve the original mass
balance equation. As an alternative, the mixed FE (MFE) and the equivalent mixed hybrid (MH)
FE techniques have been proposed to address the problem of non-conservative velocity fields
[10–13]. In large-scale applications, computational efficiency suggests to exploit the lowest-order
RT0-P0 (zero order [11]) formulation, which is the most commonly used approach, for examples
in porous media flow.

When working on unstructured triangular meshes, numerical approximations of the velocity v
obtained from linear Galerkin FE-P1 solutions of the conservation equation are usually piecewise
continuous functions that should satisfy the divergence-free property. We note here that the FE-P1
on Delaunay meshes is equivalent to the finite volume (FV) or, more conveniently, to the orthogonal
sub-domain collocation (OSC) method on Voronoi cells [7, 14, 15]. On triangular meshes, however,
the divergence-free property is not satisfied by the velocity fields coming from FE-P1 [6, 16].
On the other hand, velocity fields arising from the RT0-P0 MFE or MH are always conservative
[12]. For this reason, RT0-P0, which can be considered closely related to either cell-centered
finite volumes on triangles or integrated finite differences on quadrilaterals [4, 5, 17–20], is often
preferred to FE-P1 for the numerical solution of the mass balance equation, even though RT0-P0
is in general computationally less convenient than FE-P1. In fact, the linear system arising from
RT0-P0, in its hybrid implementation, has on the average a larger number of unknowns with respect
to FE-P1 (by a factor about 2.5 in 2D problems, and more than 7–10 in 3D problems). Moreover,
RT0-P0 seems to be numerically less robust than FE-P1 when dealing with unstructured triangular
meshes and/or heterogeneous, anisotropic media [21].

Theoretical findings for v show that both FE and MH yield optimal convergence rates, provided
the usual regularity constraints on the mesh angles and on the smoothness of the solution are
fulfilled. For example, both FE-P1 and RT0-P0 achieve first-order convergence for the solution
gradients [13] (see also Section 2.2 in the sequel). This result suggests that the differences between
the FE-P1 and RT0-P0 velocity fields cannot be too large, at least close to the asymptotic regime.
On the other hand, numerical experiments carried out on a fixed mesh show important differences
in the discrete gradient fields, and these differences are the subject of our interest in this study.

When working on real problems one is not concerned with the asymptotic case, since in most
situations the number of elements that ensures the inception of this regime is prohibitively large.
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It is thus important to understand the behavior of the different discretization strategies for a
given mesh. This problem is however difficult to study because of a lack of appropriate tools
for a quantitative comparison between different numerical solutions, and in particular different
numerical flow fields. In other words, there is no standard way for measuring the accuracy of
numerically calculated gradients at a fixed mesh size. Formal a posteriori error estimates are
generally written as a function of appropriate norms of the real solution and its gradient. In the
cases of practical interest, the gradient of the real solution often displays discontinuities that make
these estimates less useful for determining the numerical solution accuracy, albeit they obviously
remain of fundamental importance in grid refinement techniques. Thus, we look at a posteriori
characteristics of the true solution, which are satisfied by the numerical solution and use these
properties to characterize its accuracy and to highlight situations when one scheme outperforms
the other. We concentrate our efforts on FE-P1 and RT0-P0 as they are two standard approaches
and are among the most popular methods for solving diffusion equations. We look mainly at the
local mass conservation properties. This task is pursued by first looking at mass flux balance in
different control volumes, and then successively analyzing the steady-state trajectories resulting
from particle tracking integration of the numerical flow field. We find that both schemes are equally
mass conservative, contrary to general belief, if the proper control volumes are considered. On the
other hand, our results show that the streamlines obtained from the two numerical vector fields
are drastically different, showing that the generating vector fields are different. We try to give
an explanation of this phenomenon and to propose research directions that may lead to a better
understanding of these problems.

We consider the linear Galerkin FE and the RT0-P0 MHFE implementations on two-dimensional
unstructured triangulations with constant and heterogeneous scalar coefficients. Note that, RT0-
P0 is a standard approach described by many authors (see, e.g. [11, 13, 22]). It is used in many
applications, as an example in porous media flow [12, 23, 24]. The importance of the problems,
we deal with in this paper, is testified by many recent proposals for new techniques founded on
homological theory (see e.g. [25]). On the other hand, we feel it is important to understand the
details of the most commonly used methods and to resolve misconceptions and doubts that in
particular pervade certain engineering literature. It is also important to observe that the proposed
comparison relies heavily on the equivalence between the Linear Galerkin FE on Delaunay meshes
and OSC on Voronoi cells. Unfortunately, this equivalence neither hold in three spatial dimensions
[7, 26], nor for higher-order FE basis functions. It is beyond the scope of this study to investigate
the behavior of such schemes.

2. NUMERICAL DISCRETIZATIONS

The transient diffusion equation in a domain �∈R2, governing for example saturated porous media
flow, can be written as:

div v = f

(x, y) ∈ �
(1)

v=−K∇ p (2)

where p is the pressure head (potential), v is the velocity vector, K is the diffusion (or hydraulic
conductivity) coefficient, here assumed a strictly positive scalar function, and f is a source or

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1011–1031
DOI: 10.1002/fld



1014 M. PUTTI AND F. SARTORETTO

sink term. Dirichlet or Neumann boundary conditions must be given to identify a well-posed
mathematical formulation, p(x, y)= p̄(x, y) on �D, v ·n= q̄(x, y) on �N, where p̄ is the prescribed
pressure head (Dirichlet conditions) on the boundary portion �D, the vector n is the outward normal
unit vector, and q̄ is the prescribed Neumann flux across the boundary portion �N. The boundary
segments satisfy �D∪�N=��. In the interior of the domain we allow the diffusion coefficient
K to vary abruptly, as is typical, e.g. in groundwater flow problems. At the interfaces where K
changes, which are supposed to be sufficiently smooth, the analytical solution is continuous as
well as the flux normal to the interface, but gradient discontinuities occur.

Let the domain � be discretized by a triangular two-dimensional mesh T=⋃M
t=1 Tt , character-

ized by N nodes, M triangles, and E edges or sides. The diffusion coefficient, K, is discretized
by assuming that K=Kt is constant on any mesh triangle.

2.1. Galerkin P1 FE discretization

The FE-P1 method considered in this article is a standard Galerkin approach that uses piecewise
linear basis functions to approximate the unknown p(x, y) of (2) by:

p(x, y)≈ p(FE) =
N∑
i=1

pi�i (x, y)

where �i (x, y) is the classical roof function on node Ni , and pi is the corresponding nodal pressure
value. Application of the usual Galerkin procedure results in a symmetric positive definite linear
system for the unknown vector p={pi }, whose size equals the number of nodes. The discrete
velocity on triangle Tt is proportional to the gradient of the pressure, which is constant over Tt .
The numerical velocity field is thus a piecewise constant function, given by

v(FE)(x, y)=
M∑
t=1

v(FE)
t �t (x, y), v(FE)

t =−
3∑
j=1

Kt∇� j,t (x, y)p j (3)

where ∇� j,t (x, y) is the (constant) gradient of the piecewise linear basis function � j restricted to
triangle Tt . The index j denotes the j th vertex of Tt in a local numbering system, and �t (x, y) is the
characteristic function of Tt , i.e. �t (x, y)=1 if (x, y)∈Tt , �t (x, y)=0 elsewhere. This approach
is the natural method for evaluating velocities in FE-P1 schemes. It is also the most accurate, if
no additional post processing is exploited.

Remark
The tangential components of the FE-P1 gradient ∇ p(FE) =−K−1

t v(FE)
t are continuous across inter-

element boundaries of each triangle, Tt , as opposed to the normal components of both the gradient,
∇ p(FE), and the velocity, v(FE)

t . This implies that v(FE) satisfies the mass balance equation (1) only
in the weak sense [22]. Then, we expect that mass balance errors go to zero in the limit with the
same convergence rate as the numerical error. We will see that this is true if we calculate the norm
of the errors elementwise, while if we consider alternative subdomains (or element patches) we
obtain local mass balances (LMBs) that are exact up to the residual of the linear system solution.
This is the property that characterizes a locally conservative scheme [24].
2.2. Mixed MHFE discretization

Our MFE formulation uses the classical RT0 basis functions [11] together with hybridization for
the solution of the resulting linear system of discrete equations [13]. This implementation follows
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the details described in [23]. The unknowns of the differential system are the pressure p, the
Lagrange multipliers �, and the velocity field v. They are approximated by

p(x, y)≈ p(MH) =
M∑
t=1

pt�t

�(x, y)≈�(MH) =
E∑

e=1
�e�e

v(x, y)|Tt ≈v(MH)|Tt =
3∑

e=1
qewe,t

where �t and we,t are the RT0 basis functions, being �t defined elementwise, whereas �e and
we,t are edgewise. We denote by p={pt } the vector of elemental pressures, whereas q={qe}
is the vector of edge fluxes, and k={�e} is the vector of Lagrange multipliers. The RT0-P0
discretization leads to the following linear system of algebraic equations:

⎛
⎜⎜⎝

A −B C

BT 0 0

CT 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
q

p

k

⎞
⎟⎟⎠=

⎛
⎜⎝
d

f

g

⎞
⎟⎠ (4)

the matrix is built by the following blocks: A=diag[A1, . . . , AM ], B=diag[B1, . . . , BM ], C=
[CT

1 |CT
2 | . . . |CT

M ]T. Assume i,k=1,2,3 are local edge numbering indices; e=1, . . . ,E is the global
edge index; t=1, . . . ,M is the global triangle index; moreover, set r =3(t−1)+i . The elements
of the block matrices can be written as:

At =(a(t)
ik ), Bt =(b(t)

i ), Ct =(c(t)
ke ), p=(pt ), q=(qe)

d=(d(t)
i ), f=( ft )

a(t)
ik =

∫
Tt
K−1
t wi,t ·wk,t dx dy, b(t)

i =
∫
Tt
divwi,t dx dy

c(t)
ke =�kr , ft =

∫
Tt
f (x, y)dx dy

d(t)
i =−

M∑
t=1

∫
Ei

p̄iwi,t ·ni,t ds

In the previous expressions, the vector ni,t denotes the outward unit normal to edge Ei of triangle
Tt , while g accounts for Neumann boundary conditions. The edge pressure p̄i is assumed to be
zero inside the domain and on the Neumann portion of ��; hence, d(t)

i is non-zero only if Ei is a
Dirichlet boundary edge. The size of the final linear system equals the number of mesh edges.

The linear system (4) can be block solved for the unknown k resulting in:

CTZCk=CTSH−1f−CTZb(D)
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where H = BTA−1B, S= A−1B, and Z = A−1−SH−1ST. Performing these computations involves
calculating the inverse of a block diagonal matrix with 3×3 blocks, which is a trivial matter. The
ensuing system matrix is sparse symmetric and positive definite. It can be efficiently solved using
the conjugate gradient method [13, 22], preconditioned by the incomplete Cholesky factor [27].
Once k is computed, p and v are easily obtained (see, for example [13, 23, 28] for details).
Remark
Each Lagrange multiplier �e, which is constant on mesh edge Ee, supplies an approximation of
the pressure trace at Ee [13]. If there are no sources or sinks, one can show that when the value
of the Lagrange multiplier on each edge Ee of Tt is assigned to the midpoint of Ee, the resulting
three points defined in R3 span the plane parallel to the pressure gradient [5, 17, 28]. As a result,
the RT0-P0 velocity field v(MH) is constant over each triangle. RT0-P0 velocities have the same
convergence rate of FE-P1 and are closely related, as shown, e.g. in [29]. Note that in general the
normal component of the RT0-P0 velocity is continuous across inter-element boundaries, whereas
the tangential component of the gradient is discontinuous. As opposed to the FE-P1 approach,
the discrete velocity field is inherently locally mass conserving, since v(MH) satisfies the LMB
relationship:

∫
�Tt

v(MH)
t ·n+

∫
Tt

f =0

3. ERRORS IN THE NUMERICAL VELOCITY FIELDS

Theoretically, the discrete gradients arising from both FE-P1 and RT0-P0 numerical discretizations
show first-order accuracy, i.e. the errors in the appropriate Hilbert norms converge proportionally
to the mesh characteristic length h. However, at fixed mesh sizes, the errors actually displayed by
the two schemes can be drastically different. A posteriori error estimates give some information on
the quality of the discrete flow field, but they are influenced by the smoothness of the true solution.
At K interfaces, where the true solution may display large discontinuities in its gradients, these
estimates are just rough approximations, since the error constant can be very large. As such, we
would like to use some more fundamental properties of the original continuous problem as error
indicators. Two important characteristics of the exact field v that can be used for this purpose are
flux balances within closed subsets of �, and the behavior of trajectories of ideal particles.

3.1. LMB errors

Let C be the set of all closed, simply connected regions C⊂�, with a sufficiently smooth boundary
�C , so that the outward unit normal n is well defined on �C , except at most for a finite number
of points. Note that when K is discontinuous, yet constant on each triangle, Gauss and Green
theorems hold true for the exact velocity v [30]. Gauss divergence theorem ensures that

FC =
∫

�C
v ·nds=

∫
C

∇ ·vdx dy=
∫
C
f (x, y)dx dy (5)

An admissible discrete velocity field should satisfy relation (5). The amount by which this equation
is not satisfied is called the LMB error. FE-P1 and RT0-P0 discrete velocity fields do not satisfy
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LINEAR GALERKIN VS MIXED HYBRID 2D FLOW FIELDS 1017

Figure 1. A triangle, Tt , and its adjacent elements, Tk , k=1,2,3. The vector vk corresponds to the value
of a sample velocity field v on the triangle Tk . The outward normal, nk , to each side sk is also shown.

relation (5) on every region C ∈C; or in other words, there exist regions C ∈C where the discrete
velocity field is affected by the LMB errors. We now consider a few of such regions for which a
reasonable LMB error estimator can be defined.

Let C=Tt , i.e. let us consider one mesh triangle. An estimate of the flux balance, F̃Tt , can be
computed using the velocities on the adjacent triangles. As an example, the flux balance through
the triangle Tt in Figure 1 can be computed as:

F̃Tt =
∑

S∈�Tt
|S|vs ·n (6)

where for each side S∈�Tt , vs is the velocity inside Ts , which is the triangle sharing side S with Tt .
Perfect LMB dictates that the quantity F̃Tt should be always zero, except for the boundary edges
where a Dirichlet condition or a non-zero Neumann flux is imposed. In this case, F̃Tt gives the
total flux entering or exiting the domain through this edge. Incidentally, note that if in formula (6)
we use vt in place of vs , we always obtain F̃Tt =0, since vt is constant. Since v(MH)

s ·n=v(MH)
t ·n

by construction, RT0-P0 always displays perfect LMB.
Let us now consider the circulation:

CC =
∫

�C
v ·tds (7)

where t is the counterclockwise tangent field to �C . The circulation must be zero due to Green’s
second theorem:

∫
�C

v ·tds=
∫
C
(∇×v) ·ndS=

∫
C

(
�vy

�x
− �vx

�y

)
dx dy=0
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1018 M. PUTTI AND F. SARTORETTO

where n is the unit vector normal to the x–y plane. Note that this result applies because �C is a
closed curve and the curl of v is zero, since we deal with potential flow. When a piecewise constant
vector field v is given, the circulation through the triangle Tt in Figure 1 can be approximated by:

C̃Tt =
∑

S∈�Tt
|S|vs ·t (8)

where again vs is the velocity inside Ts , which is the triangle sharing side S with Tt . Clearly, t is
the tangential field to �Tt .

We now consider a different polygonal mesh region C for the flux balance calculation. Assume
that the mesh T is a Delaunay triangulation [31], where no circumcenters of boundary elements
fall outside �. Let us consider the Voronoi tessellation set,V=⋃N

j=1 Vj , associated with our mesh
nodes. Each Voronoi cell Vj is associated with the mesh node Pj and consists of the points Q,
such that d(Q, Pj )�d(Q, Pk) for k=1, . . . ,N , k �= j . Note that the Voronoi cells associated with
the internal nodes are bounded, whereas the ones pertaining to the boundary nodes are unbounded.
To overcome the unboundedness problem, we take the intersections of the boundary cells with
the domain �, so that the new set, VB, is made up of all bounded cells. The boundary, �Vj , of
each Vj ∈VB is the union of the segments connecting the circumcenters of two adjacent triangles
sharing node N j . All the other entities are defined in Figure 2.

The set �( j) of all triangles sharing the node N j forms a nodal cell, called a T -cell. We can

also construct a yet different nodal cell as follows. For any given Tt ∈�( j), let t ( j)i be the triangle
identified by node N j and the midpoints of the edges belonging to Tt , which share N j . The union

Figure 2. Portion of a sample Delaunay mesh. The triangles sharing node j are shown by
dashed-dotted lines. A further mesh triangle, (mnr), is identified by dashed lines. The Voronoi
cell, Vj , centered on node j is filled by light shade. The A-cell A j associated with node j is
pointed out by darker shade. The circumcenter of each triangle is identified by the Greek letter

	; the edge midpoints are denoted by an apostrophe.
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LINEAR GALERKIN VS MIXED HYBRID 2D FLOW FIELDS 1019

of such triangles forms the alternative cell (A-cell, for short), A j (see Figure 2). We denote by AI
the set consisting of the A-cells associated with internal mesh nodes.

Let us denote by 
( jkm)
jk the elemental linear Galerkin stiffness coefficient defined on triangle

Tt =( jkm), and pertaining to edge jk. One has


( jkm)
jk =

∫
( jkm)

K( jkm) ∇� j ·∇�k dx dy

Referring to the triangles in Figure 2, one can prove that [7, 16]


( jkm)
jk =−K( jkm)

|k′	( jkm)|
| jk| , 
( jkp)

jk =−K( jkp)
|k′	( jkp)|

| jk| (9)

The left-hand side of the first equation in (9) represents the flux through the line segment k′	( jkm),
which connects points k′ and 	( jkm) due to a unitary pressure difference between the nodes Nk
and N j [16]. On the ground of these relationships, one can prove that [7, 32]


( jkm)
jk =

∫
( jkm)

K( jkm)∇� j ·∇�k dx dy=
∫

�
−K( jkm)∇� j · dn (10)

where �=m′	( jkm)∪k′	( jkm), and n is the normal to �, pointing opposite to j . Since the integral
in (10) depends only on the endpoints m′ and k′, we can choose a different segment �′ =m′k′ to
obtain ∫

�′
−K( jkm)∇� j · dn=

∫
�
−K( jkm)∇� j · dn=
( jkm)

jk (11)

Working on triangle ( jkm) and using relation (3), we obtain


( jkm)
jm pm+
( jkm)

jk pk +
( jkm)
j j p j =

∫
�′
v(FE)
( jkm) · dn

Repeating this procedure for all triangles sharing node j we find that the j th FE-P1 equation repre-
sents the flux through the boundary, �A j , of the A-cell A j . Hence, the j th equation can be written as:

∑
T∈�( j)

∑
Ni∈V (T )


(t)
j i pi = ∑

S∈�A j

∫
S
v(FE)
t · dn

= ∑
Tt∈�( j)

∫
Tt

f (x, y)� j (x, y)dx dy (12)

where V (T ) is the set of the vertices of triangle T , v(FE)
t is the velocity on triangle Tt ∈�( j), and

n is the outward normal to A j . Thus, FE-P1 can be viewed as a sub-domain collocation approach
or equivalently except for the right-hand side and the discretization of the diffusion coefficient,
as a FV method defined on Voronoi cells. Since the basis functions are harmonic, we can view
FE-P1 as equivalent to FV defined on A-cells as well, and use the latter cells as they are easier to
calculate. Similar results but on different subdomains were proved also in [14, 15, 32]. The LMB
characteristics of the FE-P1 and RT0-P0 approach can be evaluated by looking at the discrete
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1020 M. PUTTI AND F. SARTORETTO

fluxes calculated by integrating v(·) ·n along the boundary �A j . For a piecewise constant vector
field v, the flux and circulation through A j are given by

F̃A j =
∑

S∈�A j

|S|vt ·n, C̃A j =
∑

S∈�A j

|S|vt ·t (13)

where each S is the line segment in �A j that lies inside triangle Tt ∈�( j). Each boundary piece
S∈Tt is half as long as the corresponding parallel piece of ��( j), so that the discrete flux on A j

is half the flux on the T -cell �( j), i.e.

F̃A j =
1

2

∑
S∈��( j)

|S|vt ·n= 1

2
F̃�( j)

C̃A j =
1

2

∑
S∈��( j)

|S|vt ·t= 1

2
C̃�( j)

Extending these results to Voronoi cells would imply the definition of a modified velocity field to
take into consideration the case when a circumcenter lies outside the triangle (for example, see
the circumcenter 	( jmn) in Figure 2).

Note that Delaunay meshes on two-dimensional linear Galerkin FE-P1 guarantee that a discrete
maximum principle holds, which implies monotone convergence and local conservation properties
for the numerical scheme [7, 16]. Unfortunately, this result does not carry over to three-dimensional
FE-P1. Numerical experiments suggest that also for RT0-P0 the Delaunay property is sufficient
for monotonicity in 2D triangulations [33].

3.2. Particle tracking

The comparison between the behavior of v(FE) and v(MH) can be carried out by analyzing the
streamlines calculated as trajectories of ideal particles driven by the two velocity fields. We compute
a set of approximate trajectories and perform statistical considerations to analyze the accuracy of
the discrete velocity fields, i.e. their ‘mean’ difference from the exact field v. To this aim, assume
that the exact (stationary) velocity field v(x, y)=(vx (x, y),vy(x, y)) of Equation (2) is available.
The trajectory X (t)=(x(t), y(t)), x, y∈� of a unit mass particle is obtained by

x(t)= x(t0)+
∫ t

t0
vx dt, y(t)= y(t0)+

∫ t

t0
vy dt (14)

Piecewise linear approximation X̃ of a particle trajectory X is obtained by releasing the particle at
the starting point (x0, y0), assumed to belong to triangle T , and computing the point where the line
parallel to v, through the starting point, intersects the boundary of T . The set of the approximated
trajectory points, X̃ =(x̃i , ỹi ), is given by

x̃i = x0+
i∑

j=0
vx�t j , ỹi = y0+

i∑
j=0

vy�t j (15)

where �t j = t j+1− t j , t j is the time when the particle hits the boundary of the j th triangle visited
by the path, and the first triangle ( j =0) contains the starting point. The trajectory is stopped
when it reaches the domain boundary. This last condition is not guaranteed to be fulfilled. Some
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exceptional cases must be managed. Suppose that the particle P is on the boundary of a mesh
triangle Tt . P is moved along the direction of the velocity vt until it reaches a point Q on the
opposite boundary piece of Tt . One of the following cases can occur:

1. Q can be a mesh node. In this case, more than one mesh triangle shares Q, and the velocity
field is not unique. The path is then stopped and considered as aborted path. Aborted paths
do not enter our statistical considerations. In principle, we could devise some sort of field
averaging, identify a feasible velocity vector, and let the path go on. We did not use this
approach, in order to avoid possible biases introduced in the statistics by this averaging
procedure.

2. Q is a boundary point. The trajectory is stopped and added as a valid path to our set.
3. Q is neither a boundary point, nor a mesh node. In this case, the path is driven inside the

adjacent triangle Tr sharing point Q with Tt . Two different situations can occur:

(a) vr (the velocity inside Tr ) points outward from Tr , and it will move particle P back
into triangle Tt ; the path is stopped and labeled as aborted path, as by continuing this
procedure we will end up calculating a trajectory that eventually will hit a node of Tt
and case 1 applies.

(b) in all other cases the path-line calculation proceeds and P is driven by vr inside Tr .

Our tracking procedure continues until a path either aborts or reaches the boundary.

4. NUMERICAL RESULTS

Our test problems are based on solving problem (1) on the unit square �=[0,1]2, with f (x, y)=0.
Dirichlet boundary condition p=1 is set on the x=0 side of the domain. The outflow boundary
is represented by a Dirichlet condition p=0 on the window x=1, 0.3�y�0.7 (see Figure 3,
left frame). The remaining part of the boundary is impervious, i.e. Neumann boundary conditions
�p/�n=0 are set.

In the solution of the linear systems, convergence of the Choleski-Preconditioned Conjugate
Gradient iteration is considered achieved when the relative residual of the final solution falls below
a tolerance, set equal to 10−15. Note that the mass balance errors, if evaluated using the correct
control volumes, are theoretically of the same order of magnitude of this tolerance. We acknowledge
that the use of such a small tolerance is generally not warranted and much lower tolerances can
be safely used leading to savings in computational time. However, we force such a small value for
the final residual in order to avoid problems that may arise (e.g. in the heterogeneous test cases)
with badly scaled matrices.

We start our analysis with a homogeneous problem, i.e. a constant diffusion coefficient K . Next,
we consider a heterogeneous problem featuring two pillars (i.e. the rectangles [0.3,0.4]×[0.0,0.7]
and [0.6,0.7]×[0.3,1.0]) bearing a much lower diffusion coefficient, K ′ =10−6K (see Figure 3,
on left).

We initially discretize the domain by a Delaunay triangulation,T(0), consisting of 217 elements,
127 nodes, 343 edges, obtained by means of Matlab routines [34]. Figure 3, left, shows the mesh
and the corresponding boundary conditions. Figure 4 shows the dual Voronoi tessellation (left) and
the A-cells (right). The subsequent T(�), �=1,2,3, meshes are obtained by uniform refinement
of T(0), yielding 868, 3472, 13 888 elements; 470, 1807, 7085 nodes; 1337, 4184, 20 972 edges,
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Figure 3. Delaunay mesh T(0) (left frame) and corresponding boundary conditions. Two rectangles,
which in our heterogeneous case are lower diffusion zones, have been darkened. In the right frame,

the triangles in T
(0)
F are darkened.
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Figure 4. Left frame: dual Voronoi cells (solid lines) for the Delaunay mesh T(0). The bounded Voronoi
cells have been darkened. Right frame: the internal A-cells, A(0)

j .

respectively. The meshes are characterized by a balance ratio [35] of about 0.34, which is not far
from the optimal value of 1/

√
3 attained by equilateral triangles.

Recall that the FE-P1 final linear system size is equal to the number of mesh nodes, whereas the
RT0-P0 system size is equal to the number of mesh edges. One could argue that a sound comparison
between FE-P1 and RT0-P0 characteristics should be carried over by exploiting one mesh for
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FE-P1, another for RT0-P0, chosen so that the size of the two systems are approximately equal. In
order to address this issue, we also considered two more Delaunay triangulations obtained byMatlab

routines, Ť
(0)

and its uniform refinement, Ť
(1)
. The mesh Ť

(0)
has 378 nodes, i.e. almost as many

edges as T(0), and 1063 edges. On the other hand, Ť
(1)

consists of 2744 elements, 1441 nodes,
and 4184 edges to be compared with T(1) that is characterized by 868 elements and 1337 edges.

4.1. Behavior of the LMB errors

First, let us focus on the T(�), �=0,1,2,3 meshes. Let us define the set T(�)
F of F-triangles,

where ‘F’ stands for ‘zero Flow’. The set consists of those triangles, which either are ‘internal’
(i.e. they belong to the subset T(�)

I of those triangles that do not have boundary edges), or have
impervious boundary edges. Figure 3, left, shows the F-triangles in T(0).

Recall that in our homogeneous test problem, the exact fluxes and circulations satisfy

FT =0, CT =0 ∀T ∈T, FA=0, CA=0 ∀A∈AI

Figure 5 shows the absolute values of the numerical fluxes, |F̃(·,0)
T |, calculated by the FE-P1 and

RT0-P0 discrete velocity fields obtained on the F-triangles, T ∈T
(0)
F . The fluxes are computed using

Equation (6). Each value, |F̃T |, is associated to the centroid of T , (xc, yc), and the projection of

the point (xc, yc, |F̃T |) onto the y=0 plane is plotted. The results show that the |F̃(FE,0)
T | fluxes are

not negligible, according to the discussion reported in Section 3.1. On the other hand, the fluxes

through the same F-triangles, F̃
(MH,0)
T , as calculated by the RT0-P0 velocity, are numerically zero

to double precision accuracy, again in accordance with the discussion in Section 3.1.

Let us now consider the FE-P1 and RT0-P0 fluxes, |F̃(·,0)
A |, through internal A-cells A∈A

(0)
I of

meshT(0). Figure 6 plots each absolute flux value, |F̃(·,0)
A |, versus its associated mesh node, i.e. the

0
10–18

10–16

10–14

10–12

10–10

10–8

10–6

10–4

10–2

100

F
lu
x

x

10–18

10–16

10–14

10–12

10–10

10–8

10–6

10–4

10–2

100

F
lu
x

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. Mesh T(0), homogeneous problem. Absolute values, |F̃T |, of FE-P1 numerical flux (left frame)
and RT0-P0 (right frame) through each F-triangle T . The fluxes are associated to the triangle centroid,

(xc, yc), and the projection onto the x–z plane of each point (xc, yc, |F̃T |) is plotted.
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Figure 6. Mesh T(0), homogeneous problem, FE-P1 (left frame) and RT0-P0 (right frame)
absolute fluxes through internal A-cells. The absolute flux through cell A j is plotted onto the

x–z plane versus the abscissa of node j .

projection of the point (x, y, |F̃(·,0)
A |) onto the y=0 line. It can be noted that the FE-P1 and RT0-P0

fluxes are negligible, up to double precision, on all cells in A(0). This result shows that FE-P1
can be considered as a locally conservative method, i.e. mass conservation is guaranteed when
calculated on the correct local control volume, contrary to statements found also in the recent
literature [24].

Let us now consider the heterogeneous problem. The circulation calculated from FE-P1 on
triangles is not negligible, as opposed to the homogeneous case. The same applies to both FE-P1
and RT0-P0 circulations on A-cells. Figure 7 (left) shows the triangles where FE-P1 circulation is
non-negligible. Figure 7 (right) shows the nodes associated to non-negligible RT0-P0 circulation on
internal A-cells. The Figures show that non-negligible FE-P1 circulation on triangles are observed
around the boundary of the pillars, where changes in the diffusion coefficient are displayed. Non-
zero circulations are raised also on triangles touching the no-flow Neumann boundary edges, where
the flow is strictly tangential. Similar results arise from RT0-P0 circuitation on A-cells.

Given a mesh level, �, let � indicate a measure of the LMB error (either �=F or �=C) that
occurs either on internal triangles T ∈T

(�)
I (denoted by �T,�), or on internal A-cells A∈A

(�)
I

(denoted by �A,�). The L2(T
(�)) error norm is calculated either on triangles or on A-cells can be

approximated by the discrete balances

L(�)

T,� =
⎛
⎝ ∑

T∈T(�)
I

|�T,�|2|T |
⎞
⎠

1/2

, L(�)

Ai ,�
=

⎛
⎝ ∑

Ai∈A(�)
I

|�Ai ,�
|2 |�(i)|

3

⎞
⎠

1/2

(16)

where |�(i)|/3 is the area pertaining to node i . The values of �·,� are calculated on the corresponding
geometrical regions, using either the normal fluxes (�= F̃) or the tangential fluxes (�= C̃), yielding
the L ·,F and L ·,C norms, respectively.

The numerical results are summarized in Table I. Let us consider first the homogeneous case.
Again in theory all balances should be zero, since f (x, y)=0. Numerical zero is attained when
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Figure 7. Heterogeneous problem. Right frame: filled triangles indicate a non-negligible C̃
(FE)

T . Left

frame: the nodes, where C̃
(MH)

Ai
is non-negligible, are shown.

Table I. Approximated values of the L2 norm of balance errors for velocities on internal triangles, L(·,�)
T,·

and on internal A-cells, L(·,�)
A,· . F=(normal) flux, C=circulation.

— Homogeneous Heterogeneous

Balance Alg. nT L(·,�)
T,· L(·,�)

A,· L(·,�)
T,· L(·,�)

A,·
F FE-P1 217 2.69e−02 6.92e−16 1.49e−02 5.78e−16

868 9.05e−03 7.81e−16 4.82e−03 1.16e−15
3472 3.16e−03 1.39e−15 1.58e−03 1.20e−15

13 888 1.12E−03 1.60E−15 5.27E−04 1.47E−15
RT0-P0 217 1.49e−15 1.14e−15 1.59e−15 1.05e−15

868 1.68e−15 1.05e−15 1.60e−15 1.03e−15
3472 2.03e−15 1.29e−15 1.91e−15 1.24e−15

13 888 2.55E−15 1.54E−15 2.36E−15 1.43E−15

C FE-P1 217 1.59e−15 8.03e−16 3.33e−02 3.18e−02
868 2.91e−15 2.28e−15 1.18e−02 1.18e−02

3472 6.14e−15 4.12e−15 4.29e−03 4.22e−03
13 888 1.23E−14 8.23E−15 1.51E−03 1.51E−03

RT0-P0 217 2.72e−02 9.74e−16 3.25e−02 3.41e−02
868 7.97e−03 1.19e−15 1.18e−02 1.24e−02

3472 2.63e−03 1.35e−15 4.32e−03 4.42e−03
13 888 1.09E−03 1.82E−15 1.54E−03 1.58E−03

the discrete balance is of the order 10−15, which is the tolerance used in our experiments for the
solution of our linear systems. On the other hand, when the balances are not satisfied exactly,
the corresponding norms decrease at a rate that closely resembles the error convergence rate
predicted by theory, as shown in Figure 8. Table I shows that L(FE,�)

T,F values are non negligible:
FE-P1 does not accomplish flux balance through triangles. This is the reason, why in the literature,
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Figure 8. Convergence of the LMB error for FE-P1 and RT0-P0 flux and circulation on internal triangles
and A-cells. Both the results for the homogeneous problem L(·,�)·,· and the heterogeneous case L̂(·,�)·,· are

considered. FE=Finite Elements, MH=Mixed Hybrid. Numerically zero balances are not plotted.

Table II. Approximated values of the L2 norm of balance errors, when the Ť
(�)

meshes, �=0,1, are
exploited. Label meanings are the same as in Table I.

— Homogeneous Heterogeneous

Balance Alg. nT L(·,�)
T,· L(·,�)

A,· L(·,�)
T,· L(·,�)

A,·
F FE-P1 686 8.44E−03 7.68E−16 5.81E−03 7.40E−16

2744 2.97E−03 1.09E−15 1.80E−03 8.73E−16
RT0-P0 686 1.69E−15 1.13E−15 1.60E−15 1.02E−15

2744 1.92E−15 1.19E−15 1.79E−15 1.11E−15

C FE-P1 686 2.01E−15 1.38E−15 1.44E−02 1.46E−02
2744 4.56E−15 3.24E−15 5.15E−03 5.18E−03

RT0-P0 686 9.40E−03 9.95E−16 1.47E−02 1.53E−02
2744 2.98E−03 1.24E−15 5.29E−03 5.46E−03

one finds that FE-P1 is not locally conservative. The opposite is true for L(MH,�)
T,F , �=0,1,2,3,

which is numerically zero. On the other hand, if we consider the flux through internal A-cells, the
L(FE,�)
A,F values are negligible, as well as L(MH,�)

A,F , showing that FE-P1 is indeed locally conservative
if we look at the correct control volumes, e.g. the A-cells.

In the heterogeneous case the results again follow the discussion carried over in Section 3.1. All
balances should be zero. It is worth noting that RT0-P0 still achieves exact mass balance while so
does FE-P1 only, when the A-cells are considered. while RT0-P0 does not.

Table II reports the balance errors for the meshes yielding equal computational costs for the
two schemes. It can be easily concluded that the comparison between FE-P1 and RT0-P0 balance
fluxes does not change even when more refined meshes are used for FE-P1.
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4.2. Results of particle tracking experiments

We started 100 particles at the points (x̄, ȳi ), x̄=0, ȳi = ih, h=1/101, i=1, . . . ,100. Note that, due
to our boundary conditions, the theoretical trajectories leave the domain on the portion of the right
side where p=0 (see Figure 3, left). First, let us focus on the T(�), �=0,1,2,3 meshes. Figures 9
and 10 show the FE-P1 (left) and RT0-P0 (right) trajectories calculated for the homogeneous and
heterogeneous test problems, respectively. The paths are driven by the velocity fields v(FE,0) or
v(MH,0) computed on the mesh T(0). Note that the paths that ended in the zone marked by ‘W’ in
Figure 9 (left), and 10 (left), suffered wrong exits, as they leave the domain through an impervious
portion of the boundary. The results show that the FE-P1 velocity field is not everywhere parallel
to the impervious boundaries. Figure 11 draws a detail of the v(FE,0) field for the homogeneous
(left) and the heterogeneous (right) cases. By examining the right portion of the domain, on the
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Figure 9. FE-P1 (left) and RT0-P0 (right) path lines evaluated from the numerical velocity fields in
the homogeneous case. Regions pointed at by ‘W’ show zones, where FE-P1 paths exited through an

impervious part of the boundary. The mesh is also shown by dotted lines.
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Figure 10. Analogous to the previous figure; path lines obtained in the heterogeneous case are shown.
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Figure 11. Detail of the FE-P1 path lines and corresponding v(FE,0) field for the homogeneous (left) and
heterogeneous (right) cases shown in Figures 9 and 10.

left frames of Figures 9 and 10, one can see that the FE-P1 field is not parallel to the impervious
boundary around the outflow portion. This is the reason for the wrong exit of some FE-P1
trajectories. The RT0-P0 trajectories do not show this phenomenon because of the continuity of the
normal component of v(MH,0) at element edges. Thus, the RT0-P0 velocity field is conservative as
opposed to the behavior of FE-P1. However, we would like to stress here that it is the reconstruction
of the velocity vector and not the FE-P1 linear Galerkin scheme that is non-conservative. Note that
the behavior of velocity fields as shown in Figures 9 and 10 points out the differences between
FE-P1 and RT0-P0, showing that the two schemes (or at least one of the two) are affected by
errors that are clearly visible.

Looking at the results for the heterogeneous problem in Figure 10, we note that many FE-P1
trajectories enter the slow-diffusion zones, whereas RT0-P0 paths do not. Let us consider the
elements that are either adjacent to a slow-diffusion rectangle or fall inside one of them. One
expects that the velocity on those elements is almost parallel to the rectangle sides. Instead, while
v(MH,0) is practically parallel to these sides, v(FE,0) velocity field is not. Inside the rectangles the
velocity is very small; hence, parallelism is not crucial, but in the remaining portion of the domain
it is an important feature. Non-parallel FE-P1 velocities are located on most of the sides of the
two low-conductivity zones. This behavior is a consequence of the fact that FE–P1 mass balance
control volumes are defined across K discontinuities.

Another behavior that can be ascribed to the lack of continuity of the components of the FE-P1
flow field normal to triangle edges, is what we denote by decussation of the velocity field. To
exemplify this phenomenon, Figure 11 shows an example of a region where the FE-P1 velocity
field decussates in both the homogeneous and heterogeneous cases. With reference to the left
figure, the normal components of both velocity vectors v and w point toward triangle edge AB.
Once the trajectory passing through the point D reaches the side AB at point E, the velocity outside
triangle ABC takes the particle back inside. Thus, an unfeasible point on the side AB is tracked
and we stop the trajectory at point E. Note that decussating does not occur in the RT0-P0 velocity
field. RT0-P0 trajectories abort only when they start from or reach a point where the velocity field
is non-unique. We should remark that there are several ways to handle these cases of decussation,
such as for example continue the trajectory until we reach a node where we can take the average
of the velocity vectors that surround this node. However, this approach, exactly like other similar
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Table III. Statistics of calculated trajectories. A total of 100 trajectories are evaluated, so that the numbers
can be considered as percentages. Legend: nT =# of triangles in the mesh; Alg=Algorithm; Cor=#
of correct trajectories (non-aborted); Rex=# of Right-exited trajectories; Wex=# of Wrong-exited

trajectories; Abr=# of aborted trajectories.

Homogeneous domain Heterogeneous domain

nT Alg Cor Rex Wex Abr Cor Rex Wex Abr

217 FE-P1 52 42 10 48 42 23 19 58
868 FE-P1 72 65 7 28 49 21 28 51
3472 FE-P1 75 72 3 25 53 35 18 47
13 888 FE-P1 79 76 3 21 66 45 21 34

217 RT0-P0 100 100 0 0 100 100 0 0
868 RT0-P0 99 99 0 1 99 99 0 1
3472 RT0-P0 100 100 0 0 100 100 0 0
13 888 RT0-P0 96 96 0 4 96 96 0 4

ones, introduces biases in the trajectory with respect to the PDE solution, and on purpose is not
considered in the present paper, even though it is suggested for practical applications.

Table III reports statistics of our calculated trajectories. In the worst case, (T(0) mesh, hetero-
geneous domain) 58% of the FE-P1 trajectories abort due to decussation. In the best case (T(3)

mesh, homogeneous domain), still 21% of the FE-P1 paths aborts. It is interesting to note that
the percentage of aborted paths is larger in the heterogeneous domain than in the homogeneous
one. On the contrary, only few paths abort when the RT0-P0 velocity field drives the flow. Closer
inspection shows that the trajectories do not abort because of decussation, but because of non-
unique velocity: by chance a mesh node was reached. Table III shows also that a large percentage
of FE-P1 paths escaped the domain through the impervious boundary, and this percentage is larger
when the heterogeneous domain is considered. On the contrary, all RT0-P0 paths correctly leave
the domain through the boundary line segment where p=0 is set, both in the homogeneous and
in the heterogeneous cases.

Let us address the question of comparing the trajectory statistics exploiting two meshes, one for
FE-P1, and a different one for RT0-P0, so that the ensuing FE-P1 and RT0-P0 linear system sizes
are close. Table IV shows that the statistics of the particle trajectories closely resembles those of
the previous meshes.

We conclude this section by noting that the results of trajectory calculations stress the importance
of having continuous normal velocities across triangle edges, showing that RT0-P0 is more accurate
than FE-P1 in reconstructing the constant triangle velocity vectors. However, by no means one
can conclude that RT0-P0 is a conservative scheme, whereas FE-P1 is not, as shown in the LMB
error calculations reported in the previous section.

5. CONCLUSIONS

We analyzed some properties about quantities that can be used for comparing 2D discrete velocity
fields arising from the numerical solution of diffusion equations by FE-P1 (linear Galerkin) and MH
(RT0-P0). We have shown that the v(FE) velocity field computed by exploiting a Delaunay mesh is
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Table IV. Comparison of statistics for FE and MH trajectories. The ‘Size’ column reports the size of
either FE or MH linear system; the remaining symbols bear the same meaning as in Table III.

Homogeneous domain Heterogeneous domain

M Size Alg Cor Rex Wex Abr Cor Rex Wex Abr

217 343 RT0-P0 100 100 0 0 100 100 0 0
686 378 FE-P1 79 68 11 21 59 28 31 41

868 1337 RT0-P0 99 99 0 1 99 99 0 1
2744 1441 FE-P1 84 79 5 16 73 34 39 27

conservative on properly defined A-cells. Our numerical experiments carried out for f (x, y)=0,
and piecewise constant, scalar diffusion, confirmed the following noteworthy results:

• the v(MH) field guarantees flux balance on both (internal) triangles and (internal) A-cells,
whereas v(FE) field fulfills flux balance on A-cells, but not on triangles;

• during particle tracking calculations, using the FE-P1 velocity field, we observed the following
errors:

◦ paths entering slow-diffusion zones;
◦ velocity fields are not everywhere parallel to the impervious boundary pieces, and thus
◦ wrong escapes through impervious portions of the boundary are produced;

• the trajectories calculated by RT0-P0 velocity field do not display wrong escapes and are
always parallel to impervious boundaries and discontinuity interfaces.
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